Microwave-Mediated Chiral Synthesis of O-Glycosides of β-Lactams

Indrani Banik¹, Frederick F. Becker¹ and Bimal K. Banik¹,²,³,☆

¹Department of Molecular Pathology, Unit 951, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas 77030, USA
²Department of Chemistry, The University of Texas Pan American, 1201 West University Drive, Edinburg, Texas 78539
³Current Address: Community Health System of South Texas, Edinburg, Texas 78539, USA

☆To whom correspondence to be addressed:
E-mail: bimalbanik10@gmail.com

Microwave-mediated optically active O-glycosides of anticancer β-lactams is synthesized by cycloaddition reaction of an activated carbohydrate acid with an imine. The stereochemistry differences of the products under microwave-induced reaction and classical method is not significant in contrast to other known available methods.

Keywords: β-Lactams, Anticancer compounds, Chirality, Carbohydrate, Ketene.
Microwave-Induced Synthesis of Bis-β-Lactams from Hydrobenzamide

Indrani Banik¹, Ram Naresh Yadav² and Bimal K. Banik¹,²,†

¹The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
²Department of Chemistry, The University of Texas-Pan American, 1201 West University Drive, Edinburg, Texas 78539, USA;
†Current Address: Community Health Systems of South Texas, Edinburg, Texas 78539, USA

To whom correspondence to be addressed:
E-mail: bimalbanik10@gmail.com; bimal.banik@chsst.org

Microwave-induced synthesis of bis-β-lactams is performed by Staudinger cycloaddition reaction of acid chloride and hydrobenzamide.

Keywords: Cycloaddition, Hydrobenzamide, Bis-β-Lactams, Diastereospecific.
Aldose Reductase Inhibitory Activity Studies of Substituted 3-Sulfenylindoles

Zeyad A. Dahan, Anjaneyulu Kasa, Sayyed Hussain and P.K. Zubaidha

1School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded-431606, India
2Department of Chemistry, Sir Sayyed College of Arts, Commerce, and Science, Aurangabad-431001, India

To whom correspondence to be addressed:
E-mail: zubaidhapk@gmail.com

Sulfenylindoles obtained by direct sulphenylation of indoles using diphenyl disulphide in the presence of catalytic amount of iodine in DMSO have been studied for aldose reductase inhibitory activity. As expected, different 3-sulfenylindoles derivatives that are synthesized exhibit good-to-excellent aldose reductase inhibitory activity.

Keywords: 3-Sulfenylindoles, Diphenyl disulphide, Aldose reductase inhibitory activity, Enzyme.
Collective Synthesis of Basic Carbazole Alkaloids

Shivaji B. Markad and Narshinha P. Argade

Division of Organic Chemistry, National Chemical Laboratory (CSIR), Pune-411 008, India

Starting from N-boc-protected 3-formylindole, practical synthesis of carazole alkaloids clausine E, mukonine, koenoline, murrayafoline A and murrayanine has been accomplished in overall seven steps. The application of dimethyl maleate to construct the suitably substituted aromatic ring and selective transformation of mukonine to murraya-foline A are the important features.

Keywords: 3-Formylindole, Wittig reaction, Intramolecular cyclization, Selective reductions, Carazole alkaloids.
Synthesis of N-Benzylidene-4-(5-methyl-1H-tetrazol-1-yl)benzenamines as Potent Antibacterial and Antifungal Agents

Suresh G. Vedpathak1, Gopal K. Kakade2, Prashant P. Dixit3 and Vilas S. Ingle4

1Department of Chemistry, S.M. Dnyandeo Mohekar College, Kallam-413507, India
2Department of Chemistry, M.S.P. Mandal's ASC College, Kille-Dharur-431124, India
3Department of Microbiology, Dr. B. A. Marathwada University, Sub-Campus, Osmanabad-413501, India
4Department of Chemistry, Shri Chhatrapati Shivaji College, Omerga- 413606, India

To whom correspondence to be addressed:
Fax: + 91 24 73262162
Tel: + 91 99 60235222
E-mail: sureshvedpathak@gmail.com

In search of new antibacterial and antifungal agents with improved and broad spectrum potency, we designed and synthesized a series of novel N-benzylidene-4-(5-methyl-1H-tetrazol-1-yl)benzenamines (6a-j). All the synthesized compounds were evaluated for their in vitro antibacterial against Gram-positive and Gram-negative bacteria. The antifungal activities of the synthesized compounds were also evaluated. Some of the compounds (6e, 6i, 6j) exhibited potent activities towards bacterial pathogens. Among the synthesized compounds, compound 6f exhibited potent antibacterial activity against Gram-negative Salmonella abony, Salmonella typhi, Escherichia coli and Gram-positive Bacillus subtilis bacteria. Compound 6f also shows potent antifungal activities against all the fungal pathogens.

Keywords: Benzenamines, Microbial activities, Schiff base, Tetrazole.
Synthesis and Antimicrobial Evaluation of Novel Benzene Sulfonamide Pyrazole Linked [1,2,4]Triazolo[3,4-b][1,3,4]thiadiazole Derivatives

Ramesh M. Shingare¹, Yogesh S. Patil¹, Suchita S. Gadekar¹, Dhanji P. Rajani² and Balaji R. Madje¹

¹Department of Chemistry, Vasantrao Naik Mahavidyalaya, Aurangabad, India
²Microcare Laboratory and Tuberculosis Research Center, Surat, India

To whom correspondence to be addressed:
E-mail: drmadjebr@gmail.com

A novel series of benzene sulfonamide pyrazole linked [1,2,4]-triazolo[3,4-b][1,3,4]thiadiazole derivatives have been synthesized by reaction of 4-(3-(4-amino-5-mercapto-4H-1,2,4-triazol-3-yl)-5-(3-fluoro-4-methoxyphenyl)-1H-pyrazol-1-yl)benzenesulfonamide with different substituted benzoic/pyridinyl/indolyl acids in POCl₃, characterized by IR, ¹H NMR, ¹³C NMR, MS analytical data and evaluated for their antibacterial as well as antifungal activity. Antibacterial activity of compounds 6c, 6i and 6k were found good against E. coli, P. aeruginosa, S. aureus and S. pyogenes compared to standard ampicillin. Compounds 6b and 6e is having promising antifungal activity against C. albicans as compare to standard griseofulvin.

Keywords: Acid hydrazide, Benzene sulfonamide pyrazole, 4-amino-1,2,4-triazole-3-thiol, triazolo-thiadiazole, Antibacterial activity, Antifungal activity.
Highly Efficient Stereoselective Glycosylation of β-Citronellol

Ram Naresh Yadav¹,², Saima Sardar¹ and Bimal Krishna Banik¹,³,⁴

¹Department of Chemistry, The University of Texas-Pan American, 1201 West University Drive, Edinburg, TX 78539, USA
²Department of Chemistry, Faculty of Engineering & Technology, Veer Bahadur Singh Purvanchal University, Jaunpur-222 003, India
³Current Address: Vice President, Community Health Systems of South Texas, Edinburg, Texas 78539, USA

To whom correspondence to be addressed:
E-mail: bimalbanik10@gmail.com; bimal.banik@chsst.org

Stereoselective synthesis of terpene alcohol, β-citronellol is achieved in excellent yield by molecular iodine- and indium salts-catalyzed reactions with protected glycal and protected bromo sugar derivatives.

Keywords: Glycosylation, Alcohol, Terpene, Catalysis
Novel Synthesis of Bis-β-Lactams with Unusual 2,7-Phenanthrene and 9,10-Dihydrophenanthrene Derivatives

Ram Naresh Yadav¹,², Jocabed Marquez², Ashok Kumar Srivastava¹, Amrendra Kumar Singh¹ and Bimal Krishna Banik², ³

¹Department of Chemistry, Faculty of Engineering & Technology, Veer Bahadur Singh Purvanchal University, Jaunpur, India
²Department of Chemistry, University of Texas-Pan American 1201 W. University Dr., Edinburg, TX 78539, USA
³Community Health System of South Texas, 3135 South Sugar Road, Edinburg, TX 78539, USA

To whom correspondence to be addressed:
E-mail: bimalbanik10@gmail.com

Unusual and new bis-β-lactams substituted at the 2,7-position of the phenanthrene and 9,10-dihydrophenanthrene ring are prepared via Staudinger ketene-imine [2+2] cycloaddition reaction. This methodology is recognized as one of the most important and direct accesses route to β-lactams. The diastereoselectivity of cycloaddition processes is controlled by the structures of ketene and imine. The bulky group in the ketene and imine have a great influence on the stereochemical outcome of the β-lactam ring.

Keywords: Bis β-lactams, Cycloaddition, Ketene, Unusual phenanthrene, Imine.
Anticancer Activity of Active Constituents Isolated from n-Butanolic Extracts of *Flacourtia jangomas* (Salicaceae)

Sumit Das, Suvakanta Dash, Damiki Laloo, Debopratim Dasgupta and Jun Moni Kalita

Girijananda Chowdhury Institute of Pharmaceutical Science, Azara, Hathkhowapara, Guwahati-781017, India

To whom correspondence to be addressed:
E-mail: sumitdas29@gmail.com

The present study explores the active bioconstituents of *n*-butanolic extracts of *Flacourtia jangomas* fruits and evaluate its anticancer potentiality based on the evidences from the ethnomedicinal practice of the plant. In this work, in *vivo* model was used to evaluate the anticancer activity. Hematological profiles were found to be nearly normal level in extract treated mice compared with tumor bearing control mice.

Keywords: *Flacourtia jangomas*, Dalton cell line, Flavonoids.
Green and Efficient Synthesis of Xanthene Derivatives using 1-Butyl-3-methylimidazolium Bromide under Solvent Free Condition

Virbhadra G. Kalalawe¹, Dashrath R. Munde², Raju P. Kagne¹, Sandeep N. Niwadange⁴ and Raoji D. Gutte²

¹Department of Chemistry, Yogeshwari Mahavidyalaya, Ambajogai-431517, India
²Department of Chemistry, Nanded Education Society's Science College, Nanded-431605, India
³Department of Chemistry, Willingdon College, Sangli-416415, India
⁴Department of Chemistry, Shri Govindrao Munghate Arts & Science College, Kurkheda-441209, India

To whom correspondence to be addressed:
E-mail: sachin.kalalawe@gmail.com

A multicomponent condensation of aromatic aldehydes, β-naphthols and dimidone in 1-butyl-3-methylimidazolium bromide as a green catalyst produces xanthene derivatives in good to excellent yield. Using 1-butyl-3-methylimidazolium bromide as a very efficient, convenient, economical, recyclable, green catalyst for the synthesis under solvent free condition has been developed. This method is environmental benign and advantageous compared to conventional methods because reusability of the ionic liquids, simple work-up and high yields of products.

Keywords: β-Naphthols, Xanthene, 1-Butyl-3-methylimidazolium bromide, Ionic liquid, Solvent-free condition.
Syntheses of 1,5-Benzothiazepines: Part 52: Syntheses of 8-Substituted 2,5-Dihydro-4-(4-bromophenyl)-2-(2-furyl/2,4-dichlorophenyl)-1,5-benzothiazepines

Seema Pant¹ and Meenakshi Yadav²

¹Department of Chemistry, L.B.S. Government P.G. College, Kotputli-303108, India
²Department of Chemistry, Government P.G. College, Narnaul-123001, India

To whom correspondence to be addressed:
E-mail: drseemapant@yahoo.com, ymeenakshi99@gmail.com

Two enolizable ketones, 1-(4-bromophenyl)-3-(2,4-dichlorophenyl)-2-propenone and 1-(4-bromophenyl)-3-(2-furyl)-2-propenone were reacted with six 5-substituted-2-amino benzenethiols, in dry ethanol containing trifluoroacetic acid to obtain 12 new compounds, 8-substituted-2,5-dihydro-4-(4-bromophenyl)-2-(2,4-dichlorophenyl/2-furyl)-1,5-benzothiazepines in 59-73% yields. The products were characterized on the basis of microanalytical data and spectral analysis comprising IR, ¹H NMR, and mass studies. All the synthesized compounds have been screened for their antimicrobial activity against the Gram-positive bacteria, Staphylococcus aureus and Gram-negative bacteria, Escherichia coli, Enterobacter cloacae and the fungus, Candida albicans with respective reference compounds. 8-Ethoxy-4-(4-bromo-phenyl)-2-(2,4-dichlorophenyl)-2,5-dihydro-1,5-benzothiazepine and 8-bromo-4-(4-bromophenyl)-2-(2-furyl)-2,5-dihydro-1,5-benzothiazepine compounds displayed notable antibacterial activity against Staphylococcus aureus, which was higher than that of the reference standard vancomycin at the concentration of 200 µg/disc. Six of the newly synthesized compounds were found to show significant antifungal activity against Candida albicans.

Keywords: Enolisable ketones, Trifluoroacetic acid, Antibacterial, Antifungal activity.
Montmorillonite K-10 Supported Rapid Synthesis of 4-N-Pyrazolylpyrrolopyrimidines

Rina D. Shah, Vivek C. Ramani and Nirmal M. Shah

Department of Chemistry, M.G. Science Institute, Ahmedabad-380 006, India

To whom correspondence to be addressed:
E-mail: drrdshah@yahoo.co.in

4-Hydrazinylpyrrolo[2,3-d]pyrimidines (1) have been reacted with different condensing reagents such as ethyl-2-methoxy acrylate and ethyl acetoacetate with and without the support of Montmorillonite K-10 to form respective 4-pyrazolylpyrrolopyrimidines (3 and 5) of synthetic and biological interests, where Montmorillonite K-10 supported synthesis of compounds 3 and 5 was found to be cleaner and faster.

Keywords: 4-Hydrazinylpyrrolopyrimidine, 4-N-Pyrazolylpyrrolopyrimidines, Ethyl acetoacetate, 2-Cyanoethylmethoxy acrylate, Montmorillonite K-10.
Synthetic Methodologies and Pharmacological Significance of 2-Aminobenzophenones as Versatile Building Block

Shallu Chaudhary¹, Sadhna Sharda¹, D.N. Prasad¹, Sahil Kumar² and Rajesh K. Singh¹

¹Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal-140126, India
²Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Gurugram-122103, India

E-mail: rksingh244@gmail.com

2-Aminobenzophenones are imperative chemical compounds in medicinal chemistry because of their application as valuable synthon for the synthesis of wide varieties heterocyclic compounds having versatile biological activities. Thus, over the past decades, medicinal chemists are increasing attracted towards exploring various synthetic routes and methodologies for the synthesis of 2-aminobenzophenone and its derivatives. This mini-review covers some of the finest methods for the synthesis of 2-aminobenzophenone as well as biological activities of its novel derivatives. The review also discusses the various bioactive compounds in which 2-aminobenzophenones were used as a precursor.

Keywords: 2-Aminobenzophenone, 2-Aminobenzonitrile, 2-Benzoylbenzoic acid, Anthranilic acid.
A Rapid One-Pot Synthesis and Biological Evaluation of Novel 1,2,4-Triazolo[1,5-\(a\)]pyrimidines

M.H. Chauhan, R.G. Vaghasiya, H.P. Parekh and V.H. Shah

Department of Chemistry, Saurashtra University, Rajkot-360005, India

To whom correspondence to be addressed:
E-mail: drvireshshah@gmail.com

The synthesis of 10 novel 1,2,4-triazolo[1,5-\(a\)]pyrimidine derivatives have been undertaken by involving Biginelli type three components reaction of 1-phenyl-3-aryl-1\(H\)-pyrazole-4-carbaldehydes, 3-amino-1,2,4-triazole and ethyl acetoacetate in DMF. The structure of all the compounds have been established by IR, FT-IR, \(^1H\) NMR, \(^13\)C NMR, mass spectra and elemental analyses. The antimicrobial activity against \(S.\) aureus MTCC-96 (Gram positive), \(E.\) coli MTCC-443 (Gram negative) and antifungal activity against \(A.\) niger MTCC-282 and \(C.\) albicans MTCC-227 at different concentrations using micro-dilution broth method according to NCCLS standards. The antimicrobial activity was compared with ampicillin, chloramphenicol, ciprofloxacin, norfloxacin, nystatin and greseofulvin as standard drugs at same different concentration. The compounds such as \(A-2, A-4, A-5, A-6, A-8, A-9, A-10\) showed moderate antibacterial activity against \(Staphylococcus aureus\) (Gram positive) at the concentration of 250, 100, 250, 200, 250, 250, 250 \(\mu\)g/mL while compounds \(A-3\) and \(A-6\) showed remarkable antibacterial activity against \(Streptococcus pyogenes\) (Gram positive) at the concentration of 100 \(\mu\)g/mL. Moreover, the compounds \(A-3\) and \(A-9\), found to be potent against \(Escherichia coli\) (Gram negative) at the concentration of 62.5, 62.5 (\(\mu\)g/mL) and against \(Pseudomonas aeruginosa\) (Gram negative) with the concentration of 100 \(\mu\)g/mL.

Keywords: 1,2,4-Triazolo[1,5-\(a\)]pyrimidines, 3-amino-1,2,4-triazole, Biological screening, Biginelli reaction.
Peracid Oxidation of Dihydroisoquinoline Iminium

Mouna Bouzid, Hassen Ben Salah and Majed Kammoun

Laboratory of Medicinal and Environmental Chemistry, Sfax University, Higher Institute of Biotechnology, BP 1169, 3029 Sfax, Tunisia

To whom correspondence to be addressed:
E-mail: majed.kammoun@isbs.usf.tn

The peracid oxidation of iminium 4 with \(m \)-chloroperbenzoic acid (\(m \)-CPBA) does not lead to the oxaziridinium salt but mainly yielded to a mixture of lactame 6 and nitro compound 7, as two minor products, and enamine 5 as the major product.

Keywords: Peracid oxidation, Iminium, Enamine.